
Managing Medical Research Data with a

Web-Interfacing Repository Manager

R.M. Jakobovits and J.F. Brinkley
Departments of Computer Science and Biological Structure

University of Washington, Seattle, WA

This paper describes the Web-Interfacing Repos-
itory Manager (WIRM), a perl toolkit for manag-
ing and deploying multimedia data, which is built
entirely from free, platform-independent compo-
nents. The WIRM consists of an object-relational
API layered over a relational database, with built-
in support for file management and CGI program-
ming. The basic underlying data structure for all
WIRM data is the repository object, a perl asso-
ciative array whose values are bound to a row of
a table in the relational database. Based on our
experience implementing a target application (the
Brain Mapper Console), we describe five stages
through which a system passes as it evolves from a
primitive file hierarchy to a full-fledged repository
console.

INTRODUCTION

Medical research tends to be characterized by ex-
periments which produce large collections of mul-
timedia files [1]. These data files may consist of
a wide range of image types, custom-formatted
binary data, and ASCII dumps of alphanumeric
tables. For example, functional brain mapping
data consists of thousands of ordered MRI slices
grouped into exams, 3-D rendered brain im-
ages, digitized intra-operative photographs, lists
of identified site coordinates, and alphanumeric ta-
bles of patient demographics [2]. In addition to the
actual data files, experiment management involves
handling a wide range of ancillary file objects that
aren't traditionally considered to be "data", such
as the procedural scripts used to generate the
data, descriptive HTML and word processing doc-
uments, and the all-important README text files
scattered about the directory hierarchy, which are
often the only recorded source of crucial metadata
about files in the directories. These ancillary files
are often numerous and hard to manage, and can

themselves be considered "multimedia data" from
a file management perspective.
Without the proper tools, file management may

gradually become an overwhelming task as the
amount of file-based information increases. We
have identified four major requirements that need
to be addressed when handling medical multime-
dia: metadata management, query support, user
interface construction, and application interfacing.
Each of these requirements can be addressed by

a number of popular technologies. Metadata man-
agement can be aided by enforcing strict directory
maintenance through a revision control system [3].
Queries can be supported by relegating tabular
data to a relational database. User interfaces can
be constructed as CGI or Java applications. Files
can be interfaced to applications by perl scripts,
the language of choice for managing processes and
handling files [4].
A number of competing off-the-shelf products

attempt to provide more complete solutions by in-
tegrating these features within a single tool. The
drawbacks of these commercial systems are that
they require a significant investment in monetary
and personnel resources. In addition to the high
price tag of the software itself (often costing thou-
sands of dollars), you may need to invest in new
hardware and personnel training. Furthermore,
when your repository is tied into a proprietary
vendor's system, you can not freely distribute your
results within the research community.

This paper describes the Web-Interfacing
Repository Manager (WIRM), a perl toolkit for
managing and deploying multimedia data, which
is built entirely from free, platform-independent
components. In a repository system, meta-
data about each file object are maintained. in
a database, and access to all data is regulated
by a layer of control services called a reposi-
tory manager[5]. The WIRM is essentially an

1091-828019745.00 0 1997 AMIA, Inc. 454

object-relational API [6] layered over a relational
database (MiniSQL) [7], with built-in support for
file management and CGI programming. The ba-
sic underlying data structure for all WIRM data
is the repository object, which is a perl associative
array whose values are bound to a row of a table in
the relational database. The WRM architecture,
shown in Figure 1, is described in in greater detail
in [8].

We

Figure 1: The WIRM Architecture

WIRM Architecture

The WIRM Data Model
The Repository Object API provides an object-
relational data model to the CGI programmer by
abstracting away the relational tables and allowing
the data to be viewed as collections of objects.
Each object has a schema which determines it's
structure, and a unique Object Identifier (OID),
by which it can be efficiently referenced from other
objects. A repository object can be an atomic type
(string, integer, real, OID), a file (with associated
metadata), an aggregate type (set or list), or a
composite user-defined type.
Each composite type is implemented as a table

in the relational database, with a column for ev-
ery attribute, plus an extra column to hold the
OID. When an instance of the type is created, a
row is added to the table, and an associative array
is allocated whose keys correspond to the column
names, and whose values are bound to the row

data. The Repository Object API defines query
functions which utilize the relational query engine
to retrieve rows which satisfy an SQL query, and
then allocates an associative array for each row.
The perl programmer may iterate over the re-
sults, performing arbitrary computations, and up-
dates are propagated back to the table, where they
persist between invocations. Just as an object-
oriented database can be described as persistent
C++, the WIRM can be described as persistent
perl, with the added benefit of a relational query
engine and built-in multimedia support.

The Web API
The Web API is a toolkit for the rapid build-
ing of Web-based consoles. It provides a suite of
functions for creating and parsing form elements
(e.g. popup menus, scrollable lists, etc.), based
on the free perl module CGI.pm [9]. It also pro-
vides many shortcuts for generating HTML syntax
(e.g. turning a perl array into a formatted table,
handling document layout, displaying a thumbnail
image, etc.), and a high-level interface for display-
ing query results. The API supports two distinct
abstractions for query display: the statement han-
dle visualization methods, which interface directly
to the relational DB API, and the repository ob-
ject visualization methods, which operate on perl
associative arrays.

In addition, the Web API provides invaluable
utility functions such as geLurl, which retrieves
the contents of a specified remote url into a string,
and mime-type, which returns the type of a file
based on it's extension.

The File Control Interface
The File Control Interface regulates access to the
File Storage Area (FSA). In the original version
of the WIRM, files checked out of the FSA were
copied to a shared directory, but for the sake of
efficiency, read-only requests are now granted di-
rect access to the FSA. New files are imported to
the FSA by calls to the file-import function, which
stores a file and it's associated metadata in the
repository.

The DB API
The DB API contains functions for issuing SQL
select, join, update, and delete statements, and for
managing database connections and logging. The
select statements return statement handles, which

455

The Brain Mapper
Repository Gateway

Oikjc:

.....L......
Opeuon:

PoExedcu_e...

by.,

Figure 2: CGI console built using WIRM

are 2D arrays of table data. The API uses the free
Msql-Perl Adaptor [10].

A TARGET APPLICATION

The WIM has been used to implement the
Brain Mapper console, including graphical data
acquisition forms, scripts for importing existing
file-based legacy data, a patient-centered browser
for viewing photographs and renderings, a generic
gateway for posing ad-hoc queries across all data
types, and an interface for connecting to a re-
mote image server to upload MRI slices. The con-
sole, shown in Figure 2, currently maintains mul-
timedia data for twelve patients, including demo-
graphics and surgery information, MRI slices, ra-
diology exam parameters, digitized intra-operative
photographs, 3-D surface and volume renderings,
stimulation studies, and spatial mapping data
from multiple authors.

As evidence of the high-level programming effi-
ciency of the WIRM Web and Repository Object
API's, the entire Brain Mapper console is only 330
lines of perl code. Because of the layered nature
of the WIRM architecture, there is a high level
of code reuse, and the API's themselves are ex-
tremely compact. The Web API and Tool API
leverage highly off the Repository Object API,
which in turn makes good use of the DB-API and
the File-API. Together, the five WIRM API's con-
sist of only 1100 lines of perl code.

The development of the WIRM API's proceeded
in parallel with the implementation of it's driving
application, the Brain Mapping console. Wher-
ever appropriate, we generalized solutions from
the Brain Mapper to be part of the WIRM sys-
tem. For example, the Brain Mapper needed to
display an HTML table of thumbnail images which
could be clicked to view the full-sized images, and
this function was added to the Web API, where it
could be used in other applications.

In addition to the Brain Mapper console, the
WIRM was used to implement an image archiv-
ing system and a sports tournament database [11].
The WIRM is proving to be a valuable tool for
rapid Web development, and the ease at which we
are able to implement multimedia database appli-
cations is remarkable.

THE MIGRATION PROCESS

From our experience in porting the Brain Map-
per to the repository, we have identified five stages
through which a system passes as it evolves from
being a primitive file hierarchy to a full-fledged
repository console.
Stage 1: File-Based
In this stage, all data are maintained by hand in a
directory hierarchy. Metadata are implicitly em-
bedded in each file's name and location, or scat-
tered across the directory tree in hand-written text
files. For example, consider the Brain Mapping
system before the repository was introduced. For
each patient, the MRI exams, photographs, and
map files were all stored in a directory named after
that patient. A file kevin.map located in a direc-
tory JSP implied that the file contained map data
about patient JSP's brain, authored by Kevin. No
queries were supported, and users could only in-
teract with the data by browsing the file system
and launching external applications (such as im-
age viewers) on the desired files by hand.

Stage 2: BLOBs
In the second stage, the basic file objects were
modeled as simple repository schemata. For exam-
ple, a repository object schema containing three
attributes (Patient, Author, Data-ile) was de-
fined to represent the maps described above. A
perl script was written to traverse the directory
hierarchy looking for files with the ".map" exten-
sion. When the script encountered a map file, it
copied the file into the repository's FSA using the

456

I

file-import function, and created a new Map ob-
ject using the repo-new function. In this way, the
metadata about the map file were rendered explic-
itly in the repository, and could be queried via the
repository query mechanism. Using the WIRM
Web API, it was trivial to implement a graphical
CGI console which supported retrieval of map files
by selecting from menus of patients and authors,
requiring only 5 lines of perl code.
At this stage, the repository knows nothing

about the actual coordinate data within the map
file. The map files are treated as Binary Large Ob-
jects (BLOBs), and must be processed by external
applications at the file system level.

Stage 3: Schema Evolution

To enable the repository to support queries involv-
ing the map coordinate data, the contents of the
BLOBs must be revealed to the query mechanism.
This deblobification process requires the database
designer to have an in-depth understanding of the
inherent structure of the data to be modeled, and
to evolve the schema to incorporate this structure.
This evolution is an ongoing process, and the de-
gree to which a multimedia database is deblobi-
fied tends to increase over time as the system ma-
tures. To support this process, we implemented
a schema-evolve facility as part of the Repository
Object API, which allows the database designer to
edit the structure of a schema type, and have the
changes propagate to all existing instances of that
type. For example, the Map schema defined in
stage 2 was evolved to include a fourth attribute:
a List of Sites. A Site is a new object type, which
consists of a Site-Label and a triplet of spatial co-
ordinates. Then a script was written to parse ev-
ery map data file and populate the repository with
Site objects. Once this was done, the query sys-
tem could be used to answer sophisticated ad-hoc
queries such as:

* "which sites on patient JSP have a discrep-
ancy of more than 1 cm between Kevin's map
and Jim's map?"

* "display the photos of patients who have more
than 3 sites in their POB region"

* "Do patients with higher verbal IQ's have
more language sites?"

Stage 4: Critical Mass

Until this stage, the repository is essentially a copy
of the original file hierarchy, with the added fea-
tures of query support and data display. If the
repository becomes corrupted or stale, it can eas-
ily be refreshed by dropping the entire database
and file storage area, and executing the import
scripts to repopulate the repository. This "boot-
strapping" process is only possible while the orig-
inal file hierarchy is a complete image of the data,
but at some point the repository will be used as a
data acquisition tool to collect new data. The Web
API makes it easy to construct Web forms for up-
loading files and alpha-numeric data directly into
the repository, and such data will not be mirrored
in the original file hierarchy. When this happens,
a critical mass point is reached from which there
is no going back: the repository can no longer be
boot-strapped without losing data. Although the
threat of data loss can be assuaged by using stan-
dard transactional logging, checkpoint, and recov-
ery techniques, the user might fear "relinquish-
ing the reigns" from their familiar file hierarchy
and putting their precious data completely at the
mercy of the WIRM. This can be especially discon-
certing when viewing the repository's file storage
area, where the files have been assigned mysteri-
ous numeric filenames and reside in a cryptic di-
rectory hierarchy that bears no resemblance to the
original file organization. All the implicit, human-
readable metadata has been stripped from the di-
rectory structure and relegated to the database.
Without some redundancy in the form of human-
readable file organization, the files are effectively
lost if the database happens to fail. To placate the
users, we split the file storage area into two parti-
tions: the default area, in which files are assigned
names according to their Object ID and hashed
into directories for efficient lookup, and the custom
area, which contains a user-specified, human read-
able file hierarchy. We augmented the file-import
function to allow users to circumvent the default
destination by supplying their own path and file-
name. We are hoping that the Brain Mapper users
will soon be convinced that their data are safe in
the FSA, at which point we can free up the gi-
gabytes of disk space devoted to maintaining the
original file hierarchy.

Stage 5: Tool Integration
In the final stage, the focus shifts to integration of
external software applications, which are viewed

457

as tools from the repository's perspective. The
Web interface which was developed for data dis-
play and acquisition can now be extended to sup-
port data processing, acting as a launch pad for
tools. In the Brain Mapper, we have integrated
the Web console with a tool that fetches MRI ex-
ams from a remote image server. We are still in the
early stages of tool integration, and the Tool API
needs to be further developed to support a range
of generic operations between repository objects
and applications which process them.

FUTURE WORK

In addition to further developing the Tool API,
we are considering adding the following features:

* a more sophisticated transaction model, in
which updates are performed automatically
when a transaction commits, rather than re-
quiring the programmer to explicitly update
the objects.

* better support for aggregate types at the
Repository Object API level.

* making tables orthogonal to type, as sug-
gested by Stonebraker[6].

The WIRM has evolved from being a custom tool
for the Brain Mapper project, to being a general
tool for supporting a wide range of multimedia
applications. Now that the API definitions have
stabilized, we plan to package the WIRM as a
portable perl module, develop a user manual and
tutorial, and release it for beta testing on the Web.
The UW Digital Anatomist Home Page [12] will
have information regarding the release.

Acknowledgments

This work was funded by Human Brain project
grant DC/LM02310, co-funded by the National
Institute for Deafness and Other Communication
Disorders, and the National Library of Medicine.

References

1. L. Shapiro, S. Tanimoto, J. Brinkley,
J. Ahrens, R. Jakobovits, and L. Lewis. A vi-
sual database system for data and experiment
management in model-based computer vision.
In Proceedings of the Second CAD-Based Vi-
sion Workshop, pages 64-72, February 1994.

2. B. R. Modayur, J. Prothero, C. Rosse,
R. Jakobovits, and J.F. Brinkley. Visualiza-
tion and mapping of neurosurgical functional
brain data onto a 3-D MR-based model of
the brain surface. In AMIA Fall Symposium,
pages 304-308, 1996.

3. W. F. Ticy. RCS - a system for version con-
trol. IEEE Software Practice and Experience,
15(7):637-654, 1985.

4. L. Wall and R.L. Schwartz. Programming perl.
O'Reilly & Associates, Inc., Sebastopol, CA,
1991.

5. P.A. Bernstein and U. Dayal. An overview of
repository technology. In Proceedings of the
20th VLDB Conference, September 1994.

6. M. Stonebraker. Object-Relational DBMSs:
The Next Great Wave. Morgan Kaufmann,
1996.

7. D. Hugues. Mini SQL: A lightweight database
server. http://bond.edu.au/People/bambi/-
mSQL/.

8. R. Jakobovits, B. Modayur, and J.F. Brink-
ley. A web-based repository manager for brain
mapping data. In AMIA Fall Symposium,
pages 309-314, 1996.

9. L. Stein. CGI.pm - a perl5 CGI library.
http://www-genome.wi.mit.edu/ftp/pub-
/software/www/cgiLdocs.html.

10. A. Koenig. The
Msql perl adaptor. ftp://Bond.edu.au/pub/-
Minerva/msql/Contrib/MsqlPerl.README.

11. The univer-
sity of washington internet racquetball ladder.
http://www4.biostr.washington.edu/UWIRL.

12. The digital anatomist home page. http://-
wwwl .biostr.washington.edu/-
DigitalAnatomist.html.

458

